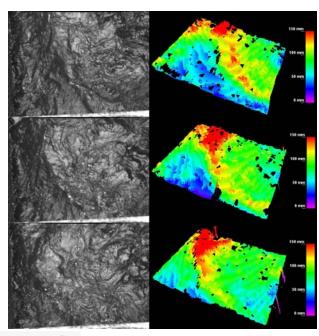

IMAGE PROCESSING & OCEAN SCIENCES MEET: 4D WAVE PATTERNS & HYDRODYNAMIC EFFECTS IN VENICE LAGOON

Francesco Fedele

School of Civil & Environmental Engineering Georgia Institute of Technology Savannah

Anthony Yezzi & Guillermo Gallego School of Computer & Electrical Engineering Georgia Institute of Technology Atlanta



1. The 'Acqua Alta' Team

GLOBAL TEAM

- F. Fedele GATECH Savannah, Civil Engineering
- **A. Yezzi, G. Gallego** GATECH Atlanta, Electrical Engineering
- A. Benetazzo, PROTECNO srl, ITALY
- A. Boscolo, Phoenix srl, ITALY
- G. Z. Forristall, Forristall Ocean Engineering USA
- L. Cavaleri ISMAR-CNR Venice ITALY

OUTLINE

ITECHNOLOGY

4DVar Wave Aquisistion Stereo System

□IMAGE PROCESSING THEORY

Variational methods for partial differential equations

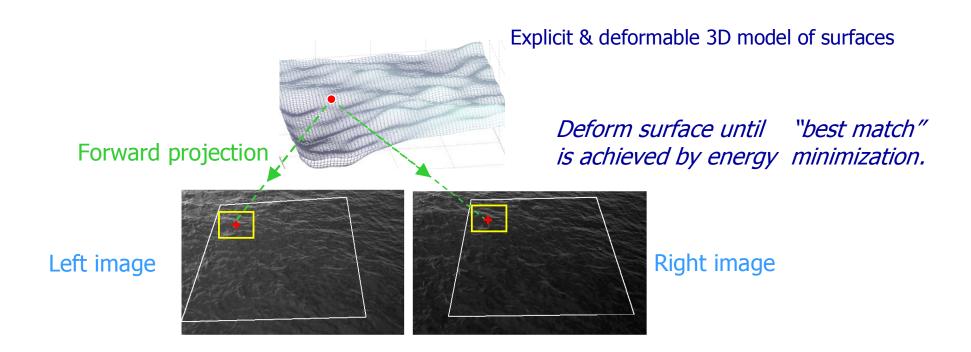
OCEAN SCIENCES

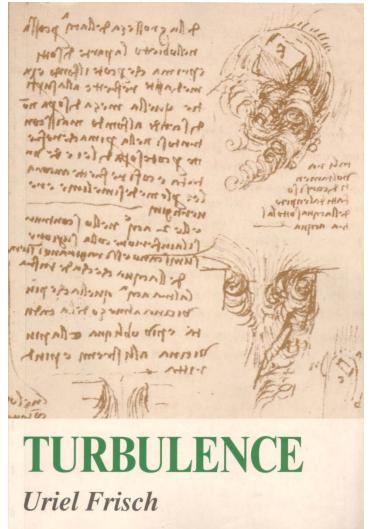
wave turbulence of Zakharov nonlinear random wave fields

■ APPLICATIONS FOR WAVE MECHANICS

4D wave patterns, hydrodynamic effects & Rogue waves

- CHEVRON PROJECT in Northern Adriatic Sea ITALY
 - MOSE PROJECT in the Venice Lagoon


WAVE ACQUISITION and ANALYSIS STEREO SYSTEM (WASS)



RECONSTRUCTION OF THE WATER 2D SURFACE FROM IMAGES

Variational stereo solution

Philosophy: adjust the 3D model to the 3D world represented by the data (images) so that an **energy** is minimized.

1.1 Turbulence and symmetries

In Chapter 41 of his Lectures on Physics, devoted to hydrodynamics and turbulence, Richard Feynman (1964) observes this:

Often, people in some unjustified fear of physics say you can't write an equation for life. Well, perhaps we can. As a matter of fact, we very possibly already have the equation to a sufficient approximation when we write the equation of quantum mechanics:

$$H\psi = -\frac{\hbar}{i} \frac{\partial \psi}{\partial t}.$$
 (1.1)

Of course, if we only had this equation, without detailed observation of biological phenomena, we would be unable to reconstruct them. Feynman believes, and this author shares his viewpoint, that an analogous situation prevails in turbulent flow of an incompressible fluid. The equation, generally referred to as the Navier-Stokes equation, has been known since Navier (1823):

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p + \nu \nabla^2 \mathbf{v}, \tag{1.2}$$
$$\nabla \cdot \mathbf{v} = 0. \tag{1.3}$$

$$\nabla \cdot \boldsymbol{v} = 0. \tag{1.3}$$

It must be supplemented by initial and boundary conditions (such as the vanishing of v at rigid walls). We shall come back later to the choice of notation.

The Nonlinear Schrödinger (NLS) equation $i\frac{\partial u}{\partial t} + \frac{1}{2}\frac{\partial^2 u}{\partial \xi^2} + k|u|^2u = 0$ cousin

 \circ f the Korteweg-de Vries Equation

$$\frac{\partial u}{\partial t} + \frac{\partial^3 u}{\partial \xi^3} + ku \frac{\partial u}{\partial \xi} = 0$$

...moreover for deep water narrowband waves the Zakharov equation reduces to the NLS equation...

$$i\frac{\partial u}{\partial t} + \frac{1}{2}\frac{\partial^2 u}{\partial \xi^2} + k|u|^2 u = 0$$

INTEGRABILITY

Non-chaos

Nonlinear interaction of waves and solitons

NONLINEAR FOURIER ANALYSIS

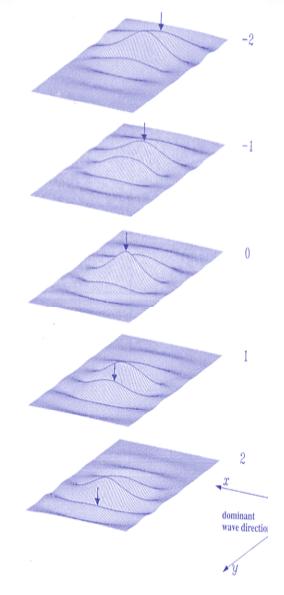
NON-INTEGRABILITY

Chaos

PERIODIC ORBIT THEORY

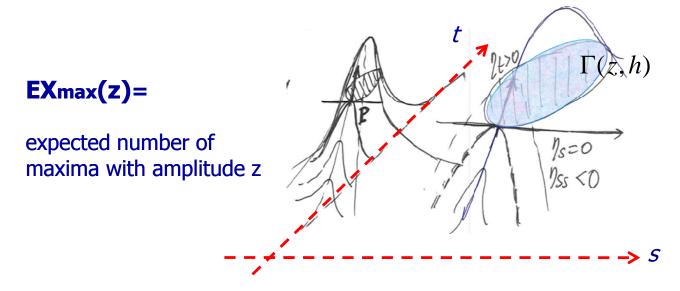
Turbulence: walk through a repertoire of recurrent patterns- Cvitanović, GATECH

Oceanic turbulence of Zakharov


Nonlinear interactions of 'stochastic wave groups'? What happens in the neighborhood of a point x_0 if a large crest is recorded in time at x_0 ?

$$\left\{ \! \eta \! \left(\mathbf{x}, t \right) \! \middle| \eta \! \left(\mathbf{x_0}, t_0 \right) \! = \! h \right\} \! = \! h \, \Psi \! \left(\mathbf{x} - \! \mathbf{x_0}, t - \! t_0 \right) \! + \! \Delta$$
 SPACE-TIME covariance

 Δ random residual, h Rayleigh variable


" stochastic wave group "
Boccotti 1989

" Slepian model "
Lindgren 1972, Adler 1981

$$S \Pr[\eta > h] = \int_{h}^{\infty} EX_{\max}(z) \Gamma(z, h) dz$$

stochastic wave group at focusing & Excursion set $\{\eta > h\}$

$$\Pr\left[\operatorname{crest} > h\right] \propto \int_{h}^{\infty} EX_{\max}(z)dz = \int_{h}^{\infty} \frac{S}{2\pi} \sqrt{\partial_{tt} F \cdot \partial_{ss} F} \frac{d^{2} \Pr(\eta > z)}{dh^{2}} dz$$

ACQUA-ALTA PROJECT – funded by CHEVRON

Northern Adriatic Sea

Stereo analysis of waves propagation

Deep waters

Italian

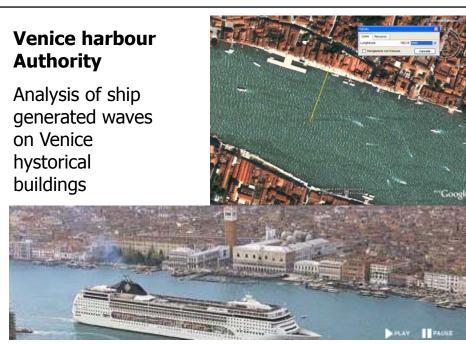
National

Research

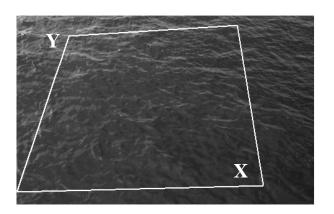
Council

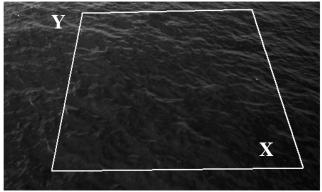
Oceanographic platform

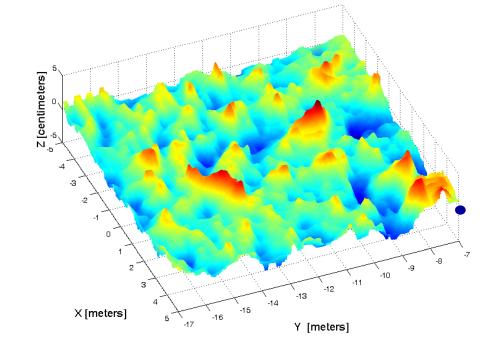
" ACQUA ALTA "



MOSE PROJECT – VENICE – funded by PROTECNO






VARIATIONAL WAVE ACQUISITION STEREO SYSTEM (VWASS)

Input stereo pair images. The rectangular domain (8 m x 8.7 m). The height of the waves is in the range $\pm 0.2 \text{ cm}$.

Reconstructed wave surface

